D2 Paper B - Marking Guide

1. (a) change all the signs to get B`s score and then add 6 to make them positive

		B		
		I	II	III
A	I	0	10	7
	II	8	1	3
	III	1	5	9

new value of game $v=V+6$
(b) let B play strategies I, II and III with proportions p_{1}, p_{2} and p_{3}

$$
p_{1}+\mathrm{p} 2+\mathrm{p} 3+\mathrm{r}=1-
$$

(c) maximise $P-\mathrm{v}=0$ but must subtract 6 at the end as 6 has been added
(d) \quad from AI, $\quad 0 p_{1}+10 p_{2}+7 p_{3} \leq \mathrm{v}^{-}$so v-0p1-10p2-7p3+s=0
from A II $\quad 3 p_{1}+10 p_{2}+8 p_{3} \leq v-$ so $v-3 p 1-10 p 2-8 p 3+t=0$
from A III, $\quad 10 p_{1}+6 p_{2}+2 p_{3} \leq v \quad$ so $v-10 p 1-6 p 2-2 p 3+u=0$
(8)
2. e.g. using stage, state approach:

Stage	State	Action	Destination	Value
1	H	$H K$	K	4^{*}
	I	$I K$	K	4^{*}
	J	$J K$	K	6^{*}
	E	$E H$	H	$6+4=10$
		$E I$	I	$5+4=9^{*}$
	F	$F H$	H	$6+4=10$
		$F I$	I	$5+4=9^{*}$
		$F J$	J	$7+6=13$
	G	$G I$	I	$4+4=8^{*}$
		$G J$	J	$4+6=10$
	B	$B E$	E	$7+9=16$
		$B F$	F	$4+9=13^{*}$
	C	$C E$	E	$6+9=15$
		$C F$	F	$6+9=15$
	D	$D F$	F	$4+9=13^{*}$
		$D G$	G	$5+8=13^{*}$
4	A	$A B$	B	$3+13=16^{*}$
		$A C$	C	$6+11=17$
		$A D$	D	$6+13=19$

giving route $A B F I K$ total distance 1600 miles
3. need to maximise so subtract all values from 55 giving

18	26	11	4	4
10	25	12	14	
23	28	16	5	
12	30	4	0	5
12		0		

reducing rows gives:
142270
$\begin{array}{lll}0 & 15 & 2\end{array}$
1823110
M1 A1
123040
----------.
col min.
01520
reducing columns gives:

14	7	5	0
0	0	0	4
18	8	9	0
12	15	2	0

2 lines required to cover all zeros, apply algorithm
B1
$\begin{array}{cccc}12 & 5 & 3 & 0 \\ 0 & 0 & 0 & 6 \\ 16 & 6 & 7 & 0 \\ 10 & 13 & 0 & 0\end{array}$
(N.B. a different choice of lines will
lead to the same final assignment)

M1 A1

3 lines required to cover all zeros, apply algorithm

$$
\begin{array}{cccc}
7 & b^{*} & 3 & 0 \\
0^{*} & 0 & 5 & 11 \\
11 & 1 & 7 & 0^{*} \\
-5 & 8 & 0^{*} & 0
\end{array}
$$

4 lines required to cover all zeros so allocation is possible
A1
R_{1} goes to A_{2}
R_{2} goes to A_{1}
R_{3} goes to A_{4}
R_{4} goes to A_{3}
4.

3944
4. (a)

lower figures give forward scan
M1 A1
minimum time is 48 days
A1
(b) upper figures give backward scan
critical path is BCEHKO
(c) E on critical path $\therefore £ 150000$ penalty
if reduce K by more than 1 day it is no longer on critical path
\therefore only reduces penalty by $£ 50000$ at cost of $£ 90000$
(d) B, C and O :
reducing any of these by 2 days reduces minimum time by 2 days this reduces penalty by $£ 100000$ at cost of $£ 80000 \therefore$ profitable

B3
5. (a) $1+8+8+15=32$

B1
(b) (i), (ii) e.g. augment $S A B G F J T$ by 4 giving:

max flow $=21$
(c) max flow as $=$ min cut of $21\{S, A, B, C, D, F, G, J\} \mid\{E, H, I, T\}$
(d) new min cut $=24\{S, A\} \mid\{B, C, D, E, F, G, H, I, J, T\}$
\therefore max flow could increase by 3

M2 A3
M1 A1
M1 A1
A1
6. (a)

P	x	y	z	r	s	
1	-3	-1	-1	0	0	0
0	4	1	2	1	0	18
0	2	3	5	0	1	11

M1 A1
(b) $\quad \theta$ values are $4 \frac{1}{2}$ and $5 \frac{1}{2}$ so pivot row is $2^{\text {nd }}$ row

P	x	y	z	r	s	
1	0	$-\frac{1}{4}$	$\frac{1}{2}$	$\frac{3}{4}$	0	$\frac{27}{2}$
0	1	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	0	$\frac{9}{2}$
0	0	$\frac{5}{2}$	4	$-\frac{1}{2}$	1	2

M2 A2
increase y next, θ values are 18 and $\frac{4}{5}$ so pivot row is $3^{\text {rd }}$ row

P	x	y	z	r	s	
1	0	0	$\frac{9}{10}$	$\frac{7}{10}$	$\frac{1}{10}$	$\frac{137}{10}$
0	1	0	$\frac{1}{10}$	$\frac{3}{10}$	$-\frac{1}{10}$	$\frac{43}{10}$
0	0	1	$\frac{8}{5}$	$-\frac{1}{5}$	$\frac{2}{5}$	$\frac{4}{5}$

(c) $\quad x=4.3, y=0.8, z=0, P=13.7$
optimal solution as all values on the objective row are ≥ 0
A1
B1

